Neurotrophin Trk receptors in the brain of a teleost fish, Nothobranchius furzeri.
نویسندگان
چکیده
Trk neurotrophin receptors are transmembrane tyrosine kinase proteins known as TrkA, TrkB, and TrkC. TrkA is the high affinity receptor for nerve growth factor, TrkB is the one for both brain-derived neurotrophic factor and neurotrophin-4, and TrkC is the preferred receptor for neurotrophin-3. In the adult mammalian brain, neurotrophins are important regulators of neuronal function and plasticity. This study is based on Nothobranchius furzeri, a teleost fish that is becoming an ideal candidate as animal model for aging studies because its life expectancy in captivity is of just 3 months. In adult N. furzeri, all three investigated neurotrophin Trk receptors were immunohistochemically detected in each brain region. TrkA positive neuronal perikarya were localized in the dorsal and ventral areas of the telencephalon and in the cortical nucleus; TrkB immunoreactivity was observed in neuronal perikarya of the dorsal and ventral areas of the telencephalon, the diffuse inferior lobe of the hypothalamus, and Purkinje cells; TrkC positive neuronal perikarya were detected in the most aboral region of the telencephalon, in the magnocellular preoptic nucleus and in few neurons dispersed in the hypothalamus. Numerous positive fibers were widely distributed throughout the brain. Radial glial cells lining the mesencephalic and rhombencephalic ventricles showed immunoreactivity to all three Trks. These findings suggest an involvement of neurotrophins in many aspects of biology of adult N. furzeri.
منابع مشابه
Brain-derived neurotrophic factor: mRNA expression and protein distribution in the brain of the teleost Nothobranchius furzeri.
BDNF (brain-derived neurotrophic factor) is a member of the neurotrophin family and it is implicated in regulating brain development and function. The BDNF gene organization and coding sequence are conserved in all vertebrates. The present survey was conducted in a teleost fish, Nothobranchius furzeri, because it is an emerging model of aging studies due to its short lifespan and shows the high...
متن کاملRNA-seq of the aging brain in the short-lived fish N. furzeri – conserved pathways and novel genes associated with neurogenesis
The brains of teleost fish show extensive adult neurogenesis and neuronal regeneration. The patterns of gene regulation during fish brain aging are unknown. The short-lived teleost fish Nothobranchius furzeri shows markers of brain aging including reduced learning performances, gliosis, and reduced adult neurogenesis. We used RNA-seq to quantify genome-wide transcript regulation and sampled fiv...
متن کاملRegulation of microRNA expression in the neuronal stem cell niches during aging of the short-lived annual fish Nothobranchius furzeri
In the last decade, our group has intensively studied the annual fish Nothobranchius furzeri as a new experimental model in Biology specifically applied to aging research. We previously studied adult neuronal stem cells of N. furzeri in vivo and we demonstrated an age-dependent decay in adult neurogenesis. More recently we identified and quantified the expression of miRNAs in the brain of N. fu...
متن کاملAge-dependent decline in fin regenerative capacity in the short-lived fish Nothobranchius furzeri
The potential to regenerate declines with age in a wide range of organisms. A popular model system to study the mechanisms of regeneration is the fin of teleost fish, which has the ability to fully regrow upon amputation. Here, we used the short-lived killifish Nothobranchius furzeri to analyse the impact of aging on fin regeneration in more detail. We observed that young fish were able to near...
متن کاملTransposon-Mediated Transgenesis in the Short-Lived African Killifish Nothobranchius furzeri, a Vertebrate Model for Aging
The African killifish Nothobranchius furzeri is the shortest-lived vertebrate that can be bred in captivity. N. furzeri comprises several wild-derived strains with striking differences in longevity ranging from 3 to 9 months, which makes it a powerful vertebrate model for aging research. The short life cycle of N. furzeri should also facilitate studies on adult traits that are specific to verte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microscopy research and technique
دوره 75 1 شماره
صفحات -
تاریخ انتشار 2012